Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*E*)-6-Bromo-3-{2-[2-(2-methoxybenzylidene)hydrazinyl]-1,3-thiazol-4-yl}-2Hchromen-2-one

Afsheen Arshad,^a Hasnah Osman,^a‡Chan Kit Lam,^b Madhukar Hemamalini^c and Hoong-Kun Fun^c*§

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 21 June 2011; accepted 22 June 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.089; data-to-parameter ratio = 16.9.

In the title compound, $C_{20}H_{14}BrN_3O_3S$, the molecule adopts an *E* configuration about the central C=N double bond. The chromene ring system and the thiazole ring are approximately planar [maximum deviations = 0.029(3) and 0.007(3)Å, respectively]. The chromene ring system is inclined at angles of 7.37 (12) and 13.90 $(13)^{\circ}$ with respect to the thiazole and benzene rings, respectively, while the thiazole ring makes a dihedral angle of $12.58 (15)^{\circ}$ with the benzene ring. In the crystal, molecules are connected by N-H···O hydrogen bonds, forming C(8) supramolecular chains along the c axis.

Related literature

For related structures, further synthetic details and background references, see: Arshad et al. (2011a,b).

Experimental

Crystal data C20H14BrN3O3S

 $M_r = 456.31$

organic compounds

Monoclinic, $P2_1/c$ a = 7.2802 (12) Å b = 19.551 (3) Å c = 14.0638 (18) Å $\beta = 113.352$ (7)° V = 1837.8 (5) Å ³	Z = 4 Mo K α radiation $\mu = 2.38 \text{ mm}^{-1}$ T = 296 K $0.43 \times 0.07 \times 0.04 \text{ mm}$
Data collection	
Bruker APEXII DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{min} = 0.427, T_{max} = 0.921$	11951 measured reflections 4266 independent reflections 2786 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.089$ S = 1.01 4266 reflections	253 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1\cdots O2^{i}$	0.94	2.10	3.021 (3)	164
Symmetry code: (i) x	$x, -y + \frac{3}{2}, z - \frac{1}{2}.$			

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT

(Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

AA, HO, CKL thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant [1001/PKimia/ 811133] to conduct this work. AA also thanks Universiti Sains Malaysia for a fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5923).

References

Arshad, A., Osman, H., Lam, C. K., Hemamalini, M. & Fun, H.-K. (2011a). Acta Cryst. E67, o1072-o1073

Arshad, A., Osman, H., Lam, C. K., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, o1007-o1008.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Additional correspondence author, e-mail: ohasnah@usm.my. § Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2011). E67, o1825 [doi:10.1107/S1600536811024536]

(E)-6-Bromo-3-{2-[2-(2-methoxybenzylidene)hydrazinyl]-1,3-thiazol-4-yl}-2H-chromen-2-one

A. Arshad, H. Osman, C. K. Lam, M. Hemamalini and H.-K. Fun

Comment

As part of our ongoing studies of substituted coumarins (Arshad *et al.*, 2011a,b) we now present the crystal structure of the title compound, (I).

In (I), the molecule adopts an *E* configuration about the central C13=N3 double bond. The chromene (O1/C1–C9) and the thiazole (S1/N1/C10–C12) rings are approximately planar [maximum deviations of 0.029 (3) Å for atom C4 and 0.007 (3) Å for atom C12, respectively]. The chromene (O1/C1–C9) ring system is inclined at angles of 7.37 (12)° and 13.90 (13)° with respect to the thiazole (S1/N1/C10–C12) and benzene (C14–C19) rings, respectively, while the thiazole (S1/N1/C10–C12) ring makes a dihedral angle of 12.58 (15)° with the benzene ((C14–C19) ring.

In the crystal (Fig. 2), the molecules are connected by N2—H1 \cdots O2 (Table 1) hydrogen bonds forming supramolecular chains along the *c*-axis.

Experimental

The title compound was synthesized by the same procedure as mentioned in our previous papers (Arshad *et al.*, 2011*a,b*). 2-Methoxy benzylidene thiosemicarbazone was reacted with 6-bromo-3- (2-bromoacetyl)-2*H*-chromen-2-one in chloroformethanol (2:1) mixture. The reaction mixture was refluxed for 2–3 hours at 60°C to get dense yellow precipitates. It was cooled in ice bath and basified with ammonia to pH 7–8. The title compound (I) was recrystallized from CHCl₃–EtOH (1:1) as golden yellow needles.

Refinement

All hydrogen atoms were positioned geometrically [N–H = 0.9449 Å and C–H = 0.93 or 0.96 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was applied to the methyl groups

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. A view of a one-dimensional supramolecular chain along the *c*-axis.

(E)-6-Bromo-3-{2-[2-(2-methoxybenzylidene)hydrazinyl]- 1,3-thiazol-4-yl}-2H-chromen-2-one

Crystal data	
C ₂₀ H ₁₄ BrN ₃ O ₃ S	F(000) = 920
$M_r = 456.31$	$D_{\rm x} = 1.649 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2197 reflections
a = 7.2802 (12) Å	$\theta = 3.0-22.4^{\circ}$
<i>b</i> = 19.551 (3) Å	$\mu = 2.38 \text{ mm}^{-1}$
c = 14.0638 (18) Å	T = 296 K
$\beta = 113.352 \ (7)^{\circ}$	Needle, yellow
$V = 1837.8 (5) \text{ Å}^3$	$0.43\times0.07\times0.04~mm$
Z = 4	

Data collection

4266 independent reflections
2786 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.036$
$\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
$h = -9 \rightarrow 9$
$k = -25 \rightarrow 24$
$l = -18 \rightarrow 18$

Refinement

- J · · · · · · ·	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.089$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.034P)^2 + 0.488P]$ where $P = (F_o^2 + 2F_c^2)/3$
4266 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

253 parameters	$\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.24394 (5)	1.084300 (17)	0.06129 (3)	0.06481 (13)
S1	0.21746 (11)	0.61887 (3)	0.38892 (5)	0.04655 (18)
01	0.2719 (3)	0.92795 (9)	0.43367 (12)	0.0453 (4)
O2	0.2679 (3)	0.83501 (10)	0.51902 (14)	0.0567 (5)
03	0.2197 (3)	0.37198 (9)	0.04438 (13)	0.0518 (5)
N1	0.2186 (3)	0.71059 (10)	0.25691 (15)	0.0403 (5)
N2	0.2131 (3)	0.59752 (10)	0.19923 (16)	0.0459 (6)
H1	0.2264	0.6102	0.1375	0.055*
N3	0.2291 (3)	0.53132 (10)	0.23123 (16)	0.0397 (5)
C1	0.2567 (4)	0.85797 (13)	0.43706 (19)	0.0402 (6)
C2	0.2663 (4)	0.96192 (13)	0.34700 (19)	0.0407 (6)
C3	0.2939 (4)	1.03179 (15)	0.3551 (2)	0.0515 (7)
H3A	0.3160	1.0541	0.4171	0.062*
C4	0.2880 (4)	1.06785 (14)	0.2703 (2)	0.0523 (7)
H4A	0.3068	1.1150	0.2744	0.063*
C5	0.2538 (4)	1.03353 (14)	0.1781 (2)	0.0446 (6)
C6	0.2293 (4)	0.96446 (14)	0.1706 (2)	0.0439 (6)
H6A	0.2081	0.9424	0.1085	0.053*
C7	0.2358 (4)	0.92670 (12)	0.25618 (18)	0.0372 (6)
C8	0.2190 (4)	0.85417 (13)	0.25783 (19)	0.0401 (6)
H8A	0.1991	0.8297	0.1978	0.048*
C9	0.2310 (4)	0.81934 (13)	0.34368 (18)	0.0372 (6)
C10	0.2232 (4)	0.74489 (13)	0.34487 (18)	0.0366 (6)
C11	0.2234 (4)	0.70361 (13)	0.42228 (19)	0.0430 (6)
H11A	0.2264	0.7192	0.4854	0.052*
C12	0.2177 (4)	0.64534 (12)	0.27085 (18)	0.0363 (6)
C13	0.2343 (4)	0.48370 (12)	0.17014 (19)	0.0375 (6)
H13A	0.2209	0.4934	0.1030	0.045*
C14	0.2620 (4)	0.41341 (12)	0.20920 (18)	0.0348 (5)
C15	0.3017 (4)	0.40043 (13)	0.3125 (2)	0.0445 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H15A	0.3043	0.4367	0.3559	0.053*
C16	0.3374 (5)	0.33511 (14)	0.3522 (2)	0.0544 (8)
H16A	0.3618	0.3275	0.4215	0.065*
C17	0.3368 (5)	0.28129 (14)	0.2896 (2)	0.0557 (8)
H17A	0.3650	0.2374	0.3170	0.067*
C18	0.2947 (4)	0.29182 (13)	0.1862 (2)	0.0479 (7)
H18A	0.2917	0.2550	0.1437	0.057*
C19	0.2572 (4)	0.35707 (13)	0.14584 (18)	0.0376 (6)
C20	0.2017 (5)	0.31519 (14)	-0.0228 (2)	0.0530 (7)
H20A	0.1687	0.3315	-0.0920	0.080*
H20B	0.0979	0.2852	-0.0220	0.080*
H20C	0.3262	0.2908	0.0005	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0782 (2)	0.0614 (2)	0.0665 (2)	-0.00399 (17)	0.04110 (19)	0.01182 (16)
S1	0.0669 (5)	0.0376 (4)	0.0421 (4)	-0.0001 (3)	0.0291 (3)	0.0017 (3)
O1	0.0660 (12)	0.0354 (10)	0.0349 (10)	0.0021 (9)	0.0203 (9)	-0.0065 (8)
O2	0.0930 (16)	0.0460 (11)	0.0367 (11)	0.0041 (10)	0.0315 (11)	-0.0039 (9)
O3	0.0867 (14)	0.0353 (10)	0.0391 (10)	-0.0008 (10)	0.0310 (10)	-0.0042 (8)
N1	0.0546 (13)	0.0317 (12)	0.0366 (12)	-0.0013 (10)	0.0202 (10)	-0.0057 (9)
N2	0.0760 (16)	0.0297 (12)	0.0394 (12)	-0.0014 (11)	0.0307 (12)	-0.0028 (9)
N3	0.0529 (13)	0.0285 (11)	0.0404 (12)	-0.0002 (10)	0.0213 (10)	-0.0002 (9)
C1	0.0459 (15)	0.0371 (15)	0.0377 (14)	0.0032 (12)	0.0167 (12)	-0.0057 (12)
C2	0.0451 (15)	0.0357 (15)	0.0408 (15)	0.0018 (12)	0.0166 (12)	-0.0033 (12)
C3	0.0630 (19)	0.0439 (17)	0.0441 (16)	-0.0017 (14)	0.0176 (14)	-0.0127 (13)
C4	0.0640 (19)	0.0327 (15)	0.0591 (18)	-0.0057 (14)	0.0234 (16)	-0.0050 (13)
C5	0.0454 (16)	0.0408 (16)	0.0516 (16)	0.0001 (13)	0.0235 (13)	0.0055 (13)
C6	0.0511 (16)	0.0444 (16)	0.0398 (15)	-0.0008 (13)	0.0219 (13)	-0.0045 (12)
C7	0.0410 (14)	0.0340 (14)	0.0366 (14)	0.0012 (11)	0.0155 (12)	-0.0064 (11)
C8	0.0481 (16)	0.0386 (15)	0.0349 (14)	-0.0009 (12)	0.0179 (12)	-0.0093 (11)
C9	0.0400 (14)	0.0367 (14)	0.0359 (14)	0.0016 (11)	0.0159 (12)	-0.0077 (11)
C10	0.0391 (14)	0.0369 (14)	0.0336 (13)	0.0012 (11)	0.0141 (11)	-0.0066 (11)
C11	0.0578 (17)	0.0398 (15)	0.0356 (14)	0.0011 (13)	0.0231 (13)	-0.0046 (11)
C12	0.0444 (15)	0.0334 (14)	0.0324 (13)	-0.0006 (11)	0.0165 (12)	-0.0026 (11)
C13	0.0485 (15)	0.0327 (14)	0.0336 (13)	-0.0012 (12)	0.0187 (12)	-0.0011 (11)
C14	0.0400 (13)	0.0296 (13)	0.0376 (14)	-0.0030 (11)	0.0184 (11)	-0.0013 (11)
C15	0.0605 (18)	0.0359 (15)	0.0404 (15)	-0.0032 (13)	0.0236 (14)	-0.0031 (12)
C16	0.082 (2)	0.0437 (17)	0.0405 (16)	0.0001 (15)	0.0280 (16)	0.0043 (13)
C17	0.079 (2)	0.0344 (15)	0.0556 (18)	0.0057 (15)	0.0293 (17)	0.0109 (13)
C18	0.0691 (19)	0.0311 (15)	0.0502 (16)	-0.0027 (13)	0.0309 (15)	-0.0047 (12)
C19	0.0454 (15)	0.0337 (14)	0.0380 (14)	-0.0032 (11)	0.0211 (12)	-0.0013 (11)
C20	0.073 (2)	0.0473 (17)	0.0419 (16)	-0.0035 (15)	0.0259 (15)	-0.0133 (13)

Geometric parameters (Å, °)

Br1—C5	1.896 (3)	С6—Н6А	0.9300
S1—C11	1.718 (3)	C7—C8	1.424 (3)

S1—C12	1.740 (2)	C8—C9	1.359 (3)
O1—C2	1.375 (3)	C8—H8A	0.9300
O1—C1	1.375 (3)	C9—C10	1.457 (3)
O2—C1	1.209 (3)	C10-C11	1.355 (3)
O3—C19	1.374 (3)	C11—H11A	0.9300
O3—C20	1.430 (3)	C13—C14	1.464 (3)
N1—C12	1.291 (3)	С13—Н13А	0.9300
N1—C10	1.396 (3)	C14—C15	1.387 (3)
N2—N3	1.360 (3)	C14—C19	1.409 (3)
N2—C12	1.365 (3)	C15—C16	1.377 (4)
N2—H1	0.9449	C15—H15A	0.9300
N3—C13	1.277 (3)	C16—C17	1.371 (4)
C1—C9	1.461 (3)	C16—H16A	0.9300
C2—C3	1.379 (4)	C17—C18	1.377 (4)
C2—C7	1.389 (3)	C17—H17A	0.9300
C3—C4	1.371 (4)	C18—C19	1.379 (3)
С3—НЗА	0.9300	C18—H18A	0.9300
C4—C5	1.392 (4)	C20—H20A	0.9600
C4—H4A	0.9300	C20—H20B	0.9600
C5—C6	1.361 (4)	С20—Н20С	0.9600
С6—С7	1.397 (3)		
C11—S1—C12	87.96 (12)	C11—C10—C9	128.1 (2)
C2—O1—C1	122.48 (18)	N1—C10—C9	117.2 (2)
C19—O3—C20	116.75 (19)	C10-C11-S1	111.30 (18)
C12—N1—C10	109.9 (2)	C10-C11-H11A	124.4
N3—N2—C12	115.7 (2)	S1—C11—H11A	124.4
N3—N2—H1	121.9	N1—C12—N2	124.4 (2)
C12—N2—H1	121.1	N1—C12—S1	116.16 (17)
C13—N3—N2	119.5 (2)	N2—C12—S1	119.44 (18)
O2—C1—O1	115.2 (2)	N3—C13—C14	117.9 (2)
O2—C1—C9	126.9 (2)	N3—C13—H13A	121.0
O1—C1—C9	117.8 (2)	С14—С13—Н13А	121.0
O1—C2—C3	116.9 (2)	C15—C14—C19	117.5 (2)
01-C2-C7	120 9 (2)	C15-C14-C13	120 3 (2)
$C_{3} - C_{2} - C_{7}$	122.1(2)	C19-C14-C13	122.1(2)
C4-C3-C2	1189(2)	C16-C15-C14	121.5(2)
C4—C3—H3A	120.5	C16-C15-H15A	119.3
C^2 — C^3 — H^3A	120.5	C14— $C15$ — $H15A$	119.3
C_{3} C_{4} C_{5}	119.6 (3)	C_{17} $-C_{16}$ $-C_{15}$	119.9 (3)
$C_3 - C_4 - H_4 A$	120.2	C17 - C16 - H16A	120.0
$C_5 - C_4 - H_4 A$	120.2	C_{15} C_{16} H_{16A}	120.0
C_{6}	120.2 121.4(2)	C16-C17-C18	120.0
C_{6} C_{5} B_{r1}	1195(2)	C16-C17-H17A	119.8
C4-C5-Br1	119.5 (2)	C_{18} C_{17} H_{17A}	119.8
$C_{5} - C_{6} - C_{7}$	119.9 (2)	C17 - C18 - C19	119.8 (2)
C5-C6-H6A	120.0	C17_C18_H18A	120.1
C7C6H6A	120.0	C19_C18_H18A	120.1
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	120.0	03 - 010 - 018	120.1
$C_2 = C_7 = C_0$	110.0(2)	03 - 019 - 010	123.3(2) 115.0(2)
$C_2 - C_1 - C_0$	117.3 (2)	03-019-014	113.7 (2)

supplementary materials

C6—C7—C8	124.5 (2)	C18—C19—C14		120.8 (2)
C9—C8—C7	122.5 (2)	O3—C20—H20A		109.5
С9—С8—Н8А	118.7	O3—C20—H20B		109.5
С7—С8—Н8А	118.7	H20A—C20—H20B		109.5
C8—C9—C10	121.4 (2)	O3—C20—H20C		109.5
C8—C9—C1	118.7 (2)	H20A-C20-H20C		109.5
C10—C9—C1	119.9 (2)	H20B-C20-H20C		109.5
C11—C10—N1	114.7 (2)			
C12—N2—N3—C13	-177.2 (2)	C1-C9-C10-C11		4.9 (4)
C2-01-C1-02	178.6 (2)	C8-C9-C10-N1		4.9 (4)
C2—O1—C1—C9	-0.9 (3)	C1-C9-C10-N1		-173.7 (2)
C1—O1—C2—C3	-176.6 (2)	N1-C10-C11-S1		-0.1 (3)
C1—O1—C2—C7	2.9 (4)	C9-C10-C11-S1		-178.8 (2)
O1—C2—C3—C4	-179.5 (3)	C12—S1—C11—C10		0.6 (2)
C7—C2—C3—C4	1.0 (4)	C10-N1-C12-N2		179.9 (2)
C2—C3—C4—C5	0.3 (4)	C10-N1-C12-S1		1.2 (3)
C3—C4—C5—C6	-1.1 (4)	N3—N2—C12—N1		174.9 (2)
C3—C4—C5—Br1	179.5 (2)	N3—N2—C12—S1		-6.4 (3)
C4—C5—C6—C7	0.8 (4)	C11—S1—C12—N1		-1.1 (2)
Br1—C5—C6—C7	-179.84 (19)	C11—S1—C12—N2		-179.8 (2)
O1—C2—C7—C6	179.2 (2)	N2—N3—C13—C14		176.9 (2)
C3—C2—C7—C6	-1.3 (4)	N3-C13-C14-C15		-6.5 (4)
O1—C2—C7—C8	-2.6 (4)	N3-C13-C14-C19		176.0 (2)
C3—C2—C7—C8	176.9 (2)	C19—C14—C15—C16		0.7 (4)
C5—C6—C7—C2	0.4 (4)	C13—C14—C15—C16		-177.0 (3)
C5—C6—C7—C8	-177.7 (2)	C14—C15—C16—C17		0.9 (5)
C2—C7—C8—C9	0.3 (4)	C15—C16—C17—C18		-2.0 (5)
C6—C7—C8—C9	178.4 (3)	C16—C17—C18—C19		1.4 (5)
C7—C8—C9—C10	-176.9 (2)	C20—O3—C19—C18		5.8 (4)
C7—C8—C9—C1	1.7 (4)	C20—O3—C19—C14		-176.2 (2)
O2—C1—C9—C8	179.2 (3)	C17—C18—C19—O3		178.1 (3)
O1—C1—C9—C8	-1.4 (4)	C17—C18—C19—C14		0.2 (4)
O2—C1—C9—C10	-2.1 (4)	C15—C14—C19—O3		-179.3 (2)
O1-C1-C9-C10	177.3 (2)	C13—C14—C19—O3		-1.7 (4)
C12-N1-C10-C11	-0.7 (3)	C15-C14-C19-C18		-1.3 (4)
C12—N1—C10—C9	178.2 (2)	C13—C14—C19—C18		176.4 (2)
C8—C9—C10—C11	-176.5 (3)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H…
N2—H1····O2 ⁱ	0.94	2.10	3.021 (3)	164

Symmetry codes: (i) x, -y+3/2, z-1/2.

Fig. 1

Fig. 2

